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Abstract:

In this paper, we workout a detailed mathematical analysis for a new learning algorithm termed
Cascade Error Projection (CEP) and a general learning frame work. This frame work can be used to
obtain the cascade correlation learning algorithm by choosing a particular set of parameters.
Furthermore, CEP learning algorithm is operated only on one layer, whereas the other set of weights can
be calculated deterministicaily. In association with the dynamical stepsize change concept to convert the
weight update from infinite space into a finite space, the relation between the current stepsize and the
previous energy level is also given and the estimation procedure for optimal stepsize is used for
validation of our proposed technique.

The weight values of zero are used for starting the learning for every layer, and a single
hidden unit is applied instead of using a pool of candidate hidden units as in the cascade correlation
scheme. Therefore, simplicity in hardware implementation is also obtained. Furthermore, this analysis
allows us to sdect from other methods (such as the conjugate gradient descent or the Newton's second
order) one of which will be a good candidate for the learning technique. The choice of learning
technique depends on the constraints of the problem (e.g., speed, performance, and hardware
implementation); one technique may be more suitable than others. Moreover, for a discrete weight
space, the theoretical analysis presents the capability of learning with limited weight quantization.
Finally, 5- to 8-bit parity problems are investigated; the simulation results demonstrate that only three
hidden units are required to learn a 5-bit parity problem perfectly and to learn a 6-bit parity with just
one pattern error. Four hidden units are sufficient for a 7-bit parity problem with no error and for an
8-bit parity problem with one pattern error.  We have restricted the learning to a fixed 100 epoch
iterations for each single-layer perception (each single hidden unit) learning. In addition, with 3- to 4-
bit weight resolution, it is demonstrated that this technique is capable of learning reliably 5- to 8-bit
parity problems by incorporating additional hidden units (up to a maximum of 20).

| Introduction

There are many ill-defined problems in pattern recognition, classification, vision,
and speech recognition which need to be solved in real time [1-3]. One of the most
attractive features of the neural network is a massively paralel processing topology that

offers tremendous speed specially when implemented in hardware. Generally, neural
network approaches in hardware face two main obstacles:

(1) difficulty of network convergence due to the learning algorithm itself as well as
the limited precision of the devices,

2 high cost of implementing hardware to truly mimic the synapse and neuron
transfer functions dictated by the algorithm.

Furthermore, the convergence and the implementable hardware have a mutual
correlation to each other; for example, the convergence of the learning network depends
on the weight resolution available in synapse [4-6], and the cost of implementation of
each bit in synapse grows, at least doubly, in silicon area, power, and connectivity [7-8]




In this paper, CEP learning algorithm is presented. It offers a ssimple learning
method using a one-layer perception approach and a deterministic calculation for the
other layer. Such a simple procedure offers a fast, reliable, and hardware implementable
learning algorithm. To validate the new learning theory of CEP, simulations for 5- to 8-
bit parity problems are investigated in weight quantization of a floating point machine
(32-bit for float and 64-bit for double precision) and limited weight quantizations (3- to
6-bit weight resolution) of VLS| hardware.

Il Cascade Error Projection: Mathematical Foundation

We describe the new learning architecture along with its mathematical foundation.
The architecture consists of two sub-networks: one uses perception learning (master
network) and the other uses deterministic calculations (slave network). The architecture
starts out as a single layer perception and adds hidden units when needed, one after
another.

Assume that the network contains n hidden units (see Fig. 1) and the learning
cannot be improved any further in the energy level. At this point, a new hidden unit (n+1)
is added to the network.
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Figure 1: Schematic diagram for CEP learning with a newly added
hidden unit (n+1). Blank circles and squares are the weight components
that are determined by iterative learning and calculation, respectively.

N is the dimension of the input space, n+1 is the dimension of the expanded input space
(n+1 is dynamically changed and is based on the learning requirement), and m is the
dimension of the output space, P is the number of training patterns. Finaly, fisa
sigmoidal transfer function which is defined by:
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Other notations are defined as follows:




€? =1t! ~0?(n) denotes the error for an output index » and training pattern p between

target ¢+ and the actual output o(n). n indicates the output with n hidden units in the
network.

' 7 (n) denotes the output transfer function derivative with respect to its input index »
and the training pattern p.

J¥ (n + 1) denotes the transfer function of hidden unit n+1 for a training pattern p.
X"denotes the input pattern p.

The energy function is defined as follows:
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The difference of energy between the network with » hidden units and the network with
n+ 1 hidden units can be obtained as,
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where w, fF (n + 1) is small. This assumption is needed for nonlinear transformation
function only.

As proved in ref. 9, the maximum energy reduction between hidden unit » and a newly
added hidden unit n+1 with respected to w,, is:
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F,(n+1)=

We can rewrite equation (1) using a matrix notation as follows:
AE=mI"F, (n+ 1) (2)

From (1) and (2), the energy reduction is dependent on a match between " and F, (n + 1).
The technique to match T with F, (n + 1) can include, e.g. perception learning with
gradient descent, maximum correlation or covariance with gradient ascent, conjugate
gradient, and Newton's second order method. Therefore, the learning network
performance really depends on the learning technique chosen for matching the error
surfaceT" and F, (n + 1), In equation (2), let £ ¢ (n)=1; then it can be rewritten as:
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If we maximize AE in equation (3) by using the maximum correlation or covariance

technique, then the learning algorithm is identical to that of Cascade Correlation. Thus a

strong mathematical basis has been established for the algorithm as originally reported in
ref, 10.

11 Error Projection Learning Algorithm

a) Learning approach:

The new energy function is defined as:
P m
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The weight updates between the inputs (including the weights by expanded inputs) and the
newly added hidden unit is calculated as follows:
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and the updated weight value for the synapse between the hidden unit A and the output
unit o can be calculated by,
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b) Simulation
1) Problems;

Using this technique, We have solved, 5- to 8-bit parity problems with (1) no limited
weight quantization (floating point 32-bit for single. precision and 64-bit for double
precision); and, (2) the limited weight quantization from 3-to 6-bits.

2) Parameters

The learning rate n is used and is set to decrease linearly as: M ., =M 4 —01 *1 , ,where
M, = initial learning rate.
For our simulation, the parameter values of table | are

Table I: Values of initial learning rate and a used in simulation for different parity
problems and bit-resolution of synapses.

5-bit parity 6-bit parity 7-bit parity - bit
Floating-point No=1.0 Ne=1.0 M0=04 N,=04
math ine Weight a=N/A a =NIA a=N/A a=N/A
3-bit Weights Mo =1.0; 1, =1.0; =10 n =10,

a =.0024810 a =.016597 a =.008766 a =.004101
4-hit Weights No=1.0; o = 1.0; No = L.0; e =1.0;

a =.0016467 a=.010858 a=.008218 a=.004101
5-bit Weights Mo =1.0; No=1.0; Mo =1.0; 1= 1.0

a =.0016467 a=.010858 a =.008163 a =.004217
6-bit Weights Mo = 1.0; Mo =1.0; No =1.0; No=1.0;

a=.0016467 a=.010858 a=.008163 a =.004217

3) Conversion technique (round-off technique)

In continuous weight space, the weight quantization can be considered as
infinite.  However, in hardware, weight quantization is always finite and limited
Therefore, it is necessary to convert the weight updates Aw to a finite weight
quantization Aw*. As proved in ref. 9, learning can be done with limited weight
quantization as long as the difference between Aw and Aw* is viewed as equivalent
independent white noise (round-off conversion technique) and the stepsize which is used
to convert from Aw to Aw* must not be fixed. The dynamical stepsize can be roughly
estimated as follows:

In continuous space, the energy reduction is:
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During learning, limited weight quantization value, Aw* directly affects the output of the
(n+1)" hidden unit f, (n+ 1). It is expressed as:

N+l n

FEm ) fr G wx+ Y #x, (j)), W is a weight component in finite weight space.
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The reduction of energy in discrete (finite) weight space [9lis:
P m
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Our main focus is finding the conversion factor (stepsize) based on known parameters
(e.g. previous energy E(n)). This will lead to an estimation of the conversion factor, and
hence, enhanced learning with limited weight quantization.

AE o« f7(n+1) (6)
Ignoring the nonlinear characteristic, it is roughly estimated that:

Fif (n+ 1) o<W o< stepsize(n + 1) (7)
From (5), (6), and (7) one can express

stepsize(n + 1) < E(n) (8)
The expression in (8) is a critical step in estimating the dynamical stepsize which is

dependent on the previous energy of the network. In other words, the expression can be
written as:

stepsize(n+ 1) = aEn)

The value of o can be obtained for each application through simulation (e.g. Table 1)
The weight update Aw is converted into the equivalent available weight quantization
Aw*. The conversion can be summarized as follows:
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4) _Simulation results.

As noted earlier, we are solving 5-,6-,7-, and 8-bit parity problem with different synaptic
resolution. We compare the results of higher and lower synaptic resolution to show the
robustness of such an algorithm for hardware implementation. The input and output highs
are 0.8, and the lows are -0.8. The neuron transformation function is a hyperbolic tangent




function. Zero values are used for the initial weights of each newly added hidden unit;
therefore, it is not needed to conduct extra runs for each problem. A 100 epoch iterations
learning is applied to each hidden unit for the weight between the input and the current
hidden unit only.
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Figure 2: The chart shows CEP learning capability and the number of
hidden units required to correctly solve 5- to 8-bit parity problems using
round-off technique. x axis represents weight quantizations (3-6 and
64-bit) and y axis shows the resulting number of hidden units (limited
to 20). Each hidden unit learning is provided with 100 epoch iterations.
As shown, a lager number of hidden units compensate for the lower
weight resolution.

Table |1: The number of iterations required for a single perception learning for different parity
problems to obtain the convergence.

o-DIt parity 6-DIT parity 7-bit parity 8-biitparity
3-bit weights 700 epochs 1200 epochs 900 epochs *
4-bit weights 300 epochs 500 epochs 600 epochs 1200 epochs
5-bit weights 300 epochs 400 epochs 400 epochs 1100 epochs
6-bit weights 300 epochs 400 epochs 400 epochs 700 epochs
64-bit weights 300 epochs 400 epochs 400 epochs 600 epochs

* Did not converge completely within the 20 hidden units limit. The percentage error was 136% after a
total of 1600 epochs of learning iterations.

V. Conclusions

In this paper, we have shown that CEP isa reliable technique for both software- and
hardware-based neural network learning. From this analysis, it is shown that the CC
algorithm is a special case and can be understood in greater depth with this analysis.
Moreover, the theoretical analysis provides us with the general framework of the learning



architecture, and the particular learning algorithm can be independently studied for its
suitability for a given application associated with given constraints specific to each
problem. For example, for hardware implementation CEP is advantageous, but for
software, covariance or Newton's second order method is more advantageous). For the
CEP learning agorithm, the advantages can be summarized as follows:

. A fast and reliable learning technique

. An easy implementation in hardware

« A low weight resolution requirement in weight space

« A robust model in learning neural networks
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